• Reduce text

    Reduce text
  • Restore text size

    Restore text size
  • Increase the text

    Increase the text
  • Print

    Print
Alba white truffle. © INRA, MURAT-FURMINIEUX Claude

Truffle genomes unlock secret of how its aromas are made

An international consortium coordinated by INRA and including the Joint Genome Institute (JGI), the CEA-Genoscope, the University of Turin, Université de Lorraine and the CNRS has sequenced the genomes of several prized species of truffle, including the Alba white truffle, the summer or Burgundy truffle and the desert truffle. This breakthrough provides new insight: not only into the ecologically important role of tree/fungi symbiosis, but most importantly into the mechanisms involved in truffle growth and the creation of their famous odours. The consortium’s findings appear in the 12 November 2018 edition of Nature Ecology and Evolution.

Updated on 11/26/2018
Published on 11/12/2018
Keywords: GENOME - Truffle

In 2010, the team of microbiologists at INRA-Nancy teamed up with Genoscope (France’s national center of sequencing) and with Italian counterparts to successfully sequence the genome of the Périgord black truffle. It took eight years to complete this substantial study, published in Nature Ecology and Evolution. By sequencing the genomes of other renowned truffles such as the Alba white truffle, summer truffle and desert truffle), the international consortium succeeded in identifying the genes responsible for the development of symbiosis and fruiting bodies, which are remarkably well-preserved in all of the sequenced truffles. The study and comparison of these genomes has improved scientists’ understanding of the biology and ecology of different kinds of truffles. These genomic resources have revealed certain aspects of these mysterious fungi, such as their modes of reproduction and methods of synthesizing the complex, distinctive aromatic cocktails.

   A truffle species’ flavour is composed of nearly 50 aromatic molecules

A truffle’s odour is composed of a complex cocktail of volatile organic compounds. The release of these compounds is a biological function closely linked to reproduction which has ensured the perpetuation of truffle species for nearly 150 million years. Truffles produce their fruiting bodies underground, out of sight and protected from drought. However their pungent odour attracts boars and rodents which unearth and eat them, thus dispersing their spores around the truffle-field. Deconstructing aromas has naturally taken centre stage in research on truffles. A typical aroma in a species of truffle is made up of nearly 50 different molecules. Genes coding for enzymes involved in aroma biosynthesis were particularly active in the different truffles studied, allowing the production of very specific aromatic molecules, including several sulphur compounds. The compounds from pungent truffle odours – humus and musk in the Périgord black truffle, and camembert and garlic in the famous Alba white truffle – rely on the differential gene activity in mature fruiting bodies. More surprising, researchers discovered that the bacteria and yeasts abundant on the truffle’s surface as well as in the centre of the fruiting bodies could modify the composition of the released aromatic cocktail. As is the case with cheeses, bacteria and fungi appear to work in tandem to produce the complex aromas that seduce food lovers.
  
Researchers in the consortium are now using these genomic resources to explore symbiotic interaction between truffles and trees, as well as the formation of fruiting bodies. Resources are also used to develop new tools aimed at better understanding truffle-field ecology, such as the CulturTruf1 project.

1http://www.inra.fr/Grand-public/Rechauffement-climatique/Tous-les-magazines/Impact-des-secheresse-sur-la-production-de-truffe

  

Contact(s)
Scientific contact(s):

Press Relations:
INRA News Office (33 1 42 75 91 86)

Reference

Claude Murat, Thibaut Payen, […]Francis M. Martin Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle, Nature Ecology & Evolution, 12 November 2018, DOI: http://dx.doi.org/10.1038/s41559-018-0710-4.